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Solve the following Integer Program using the BPT and
the CT methods

min 2x, + 4x; + 4x, + 4x3 + 4x4 + 4x5 + Sxg + 4x7 + S5xg + 6x9 + 5x4
X

L 00 4 1.2 O I 4 1. 1 1

0O 101 0110111 1]

G 0% B 1.0 . 1 F 4 1 1
x € {0,1}!

S. L. X =

Remember
e |P to Polynomials
e Polynomials to Ideal
e Grobner of Ideal
e Interpretation of Grobner
o Test-set
Food for thought: Would it be possible to solve min Z exp(c;x?) or min Z log(c; + x;)

via Grobner basis? t t
Ax=0b Ax=0b

Carnegie Mellon University x € {0,1}" x € {0,1}" E
Tepper SChOOl Of BUS'DESS William Larimer Mellon, Founder 2 C PD



A q
Y L

; genda

o Brief History of Test Sets: Graver, Neighborhood of the Origin,
Groebner

o Hilbert Basis

o Integral Basis
o Graver Basis
o Graver and Grobner

o N-Fold Integer Program

o Comparison of Naive Graver Basis approach with IP solvers

Acknowledgements: Material is based on the Lecture
o Take-home message by Maria Isabel Hartillo for IMUS-MSRI2016 and the
slides by Shmuel Onn and De Loera, Jesus A., Raymond

Hemmecke, and Matthias Koppe, eds. Algebraic and geometric

. . . ideas in the theory of discrete optimization. Society for Industrial
Carnegie Mellon University and Applied Mathematics, 2012. -
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https://www.imus.us.es/IMUS-MSRI2016/assets/media/docs/lectures/lec_hartillo_1.pdf
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https://ie.technion.ac.il/~onn/Talks/Seville.pdf
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g/Hilbert basis '

We will obtain the Hilbert basis from two different approaches.

e AsetH C F C Z"is an integral generating set of F if for F = Cone N Z2
every X € F there exists {h;,---,h;} € H such that
x=>"F \h,\eZ,
That integral generating set can be called an integral basis
if it's minimal with respect to inclusion.
The integer points is a polyhedral cone have a finite integral
basis called the Hilbert basis = e

e Consider solving a homogeneous system of linear equations il
over the non-negative integers. Using the constraint matrix
from our integer programs as such system we would like to e
find the kernel of that matrix. H in yellow

ker(A) = {x € Z} : Ax = 0}
The subset of non-zero minimal elements of the kernel:
Ha = {x € ker(A) \ {0}} s.t. is minimal to inclusion

Is the Hilbert basis of the matrix A

Carnegie Mellon University
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; Integral basis

Slight generalization of Hilbert basis which can be used in a simplex-like integral basis
algorithm to solve IPs by pivoting out elements until it becomes irreducible (no branching
or cuts). This method is efficient to verify optimality

Table 1. Problems from the MIPLIB

Columns Rows Iterations Max. Size® Time”
p0033 33 16 il 54 |
p0201 201 133 191 278 48
p0282 282 241 34 243 14
p0548 548 176 549 1424 610
Iseu 28 89 329 310 38
cap6000 6000 2176 12 134 1592
mod008 319 6 636 848 409

¢ Maximum number of non-basic variables during the course of the algorithm.
> In seconds, on a Sun Enterprise 450 with 300 MHz.

*Results from 20 years ago!
Although finite, the test-set might be huge!
Promising incorporation within branch-and-cut methods.

C . M ll . . [1! Haus, Utz-Uwe, Matthias Képpe, and Robert Weismantel. "The integral basis method for
arnegie \vieilon UHIVCI'Slty integer programming." Mathematical Methods of Operations Research 53.3 (2001): 353-361.
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Graver basis - Definition

N

Given the constraint matrix A
We denote O the j"orthant of R (2")
Then for each orthant we define

H;i(A) =H(A)NO;

The union of all these minimal Hilbert
basis

G(A) = U, H;(A)

Is denoted the Graver basis

. r.t

= s

. S.{g . . . . . 3:2 .

Carnegie Mellon University S
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; Graver basis - Ordering

Notation
® u,v € R"are conformal if u;v; > 0,Vj = {1,---,n} , meaning that both belong to
the same orthant
o Example: a=(1,-2,0) b=(2,-1,8) c=(-3,—4,6)
a and b are conformal, but C is not conformalto aor b
e Foru,v e R"wedenote y [ vif uand v are conformal and if
!uj! < \vj|,Vj — {1, .. ,n} ; meaning that both belong to the same orthant and V
is farther from the origin than U
e Example: Neither a [Z bor b [Z a,but a T d where d = (3,—4,1)

From the constraint matrix A we define the lattice
L(A)={x:Ax=0,x € Z"}\ {0}
Of which the set of C-minimal elements (which is finite) is the Graver basis G(A)
e Positive Sum Property
Everyz € ker(A) has a [C-representation with respect to G(A)

Z — Zz Q;gi, Q4 € Z+,gi S g(A)agz' L z

Carnegie Mellon University
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/ Graver and Grobner basis

Using the CT method, let's remember that from an integer program with constraint matrix A
we can compute a right-hand-side independent toric Ideal Z N Q[W] = Ta
We denote the Grobner basis of that toric ideal with respect to an ordering given by the

objective ¢ € 7" as B-_(A) =B(A,c)

Now, let’s define a Universal Grobner basis as
U(A) = U,z B(A, )

The Graver basis contains, up to negating vector, the Universal Grobner basis
UA) = U,z B(A,€) CG(A)

e Notice how the Graver basis is independent from the objective function
e In certain cases, the Universal Grobner basis and the Graver basis are equal

o If A is totally unimodular
o If A isaLawrence lifting matrix

Carnegie Mellon University
Tepper School of BUSINESS  wittiam Larimer Melion, Founder 8 __Q\C P:D



g/Graver and Grobner basis

Lawrence lifting A 0O
Consider the enlarged matrix A(A) =
I, I,

Its toric ideal is given by Zja) = {xTy" —x" y* :ucker(A)}
Satisfies that: G(A(A)) = U(A(A)) = B(A(A), ¢), c arbitrary

Therefore we can device an algorithm to compute Graver basis:
Input: A ¢ 7Z™m™*n

Output: G(A)

Choose any term order > on Q[x,y]

Compute the reduced Grobner basis |3 of IA(A)with respect to >
Substitute y; — 1 forany g € B

Return

Carnegie Mellon University S
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; Graver and Grobner basis

Lawrence augmentation

https://colab.research.google.com/github/bern
alde/QulIP/blob/master/notebooks/Notebook%2
03%20-%20Graver%20basis.ipynb

Carnegie Mellon University
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https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%203%20-%20Graver%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%203%20-%20Graver%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%203%20-%20Graver%20basis.ipynb

4 T

7

Normal form algorithm

Normal form
Below is an algorithm to compute the Normal form I of an element § & [ with respect
toaset G C L suchthat

r = normalForm(s,G) € Lst.s =) . a8, + 1,04 € Z4,8, € G,r Cs;g, Zr,Vg, €G

Normal form Algorithm
Input: vectorg = [,set G C L

Output: vector r = normalForm (s, G) € L

Initialize: § — T°
WHILE 3g c Gst.gCr

r —g—r
Return p

Notice that this procedure is extremely costly

Carnegie Mellon University
Tepper SChOOl Of BUS'HeSS William Larimer Mellon, Founder 11 C PD
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g/ Pottier’s algorithm

Now with the Normal form we can compute the set of C-minimal elements in a lattice £ \ {0}
(Graver basis since we choose L = ker(A) )

input Generating initial set /' C £ = ker N(A)
output Graver basis set G C £\ {0}

Initialize symmetric set: G < F U (—F)
Generate S vector set: C' <+ |J {f + g}

f.9€9
while C' # () do
Vs e C : r <+« normalForm(s,G) and C + C\{s}

if » # 0 then
Update: G+ GU{r} and C+ CU{r+g} ¢ €6
end if
end while
return ¢

Drawback: The set g might contain many elements of [ that are not C-minimal

Carnegie Mellon University
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; Project-and-lift algorithm

e Apply Pottier’s algorithm to achieve Graver basis on a subset of all variables. Al
vectors in ker(A) (in particular all Graver basis elements) can be generated by
increasing norm on these variables: Project phase - 7" — 74

e Apply Pottier’s algorithm again, but to all variables.

o Fewersums f + g have to be considered
m f,g should have the same sign pattern
o  Only the sums f + ghave to be considered if they fulfill upper bound conditions

on the chosen variables

input set F of L C Z", such that 7 (F) are the C-minimal elements in (L) \ {0}.
output set G C L containing all E-minimal elements in £\ {0}.

G < F.

C« |J {f+g} The most efficient
f.geG . .
while C + @ do |m.plemer?tat|o.n of
s < an element in C with || (s)||; = min{ ||z (t)|; :te C}. this algorithm is
C < C\{s}. available in the

if Av € G with v C s then

C <~ CU{s+g:ge G where r(s) and 7 (g) are sign compatible}.
G < GU{s}.
return G.

Carnegle lvielon university
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g/ Test-sets and valid objectives

Test-set
Given an integer linear program min, f(x) st. Ax=b,1<x < u,x € Z" there exists a
finite set denotes test-set 7 = {t',---,t" } that only depends on A, that assures that a

feasible solution nonoptimal point X() satisfies for some o € Z

e f(xo+ at?) < f(xo)
* x, + at’ is feasible

For which objective functions f(x) ?

e Separable convex minimization: Y, fi(c/ x) with fi convex

e Convex integer maximization: —f(WX) where W & den and f convex

e Norm p minimization: f(x) =[x —%]|,

e Quadratic minimization: f(x) = x' Qx where Q lies on the dual of the quadratic
Graver cone of A

o this includes certain nonconvex Q ¥ 0

e Polynomial minimization: f(x) = P(x) where P is a polynomial of degree d |,

that lies on cone IC;(A), dual of jth degree Graver cone of A

C . M . . [1] Alghassi, Hedayat, Raouf Dridi, and Sridhar Tayur. "Graver bases via quantum annealing with
application to non-linear integer programs." arXiv preprint arXiv: . .
arnegie Mellon University lication t t "arX t arXiv:1902.04215 (2019)
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V/Solutlon methods for
/ Combinatorial Optimization
Current status and perspectives

Classical methods Not very popular classical methods
Methods based on divide-and-conquer Methods based on test-sets
Branch-and-Bound algorithms e Algorithms based on “augmentation”
e Harness advances in polyhedral e Use tools from algebraic geometry
theory e Global convergence guarantees
e With global optimality guarantees e \ery few implementations out there
e \Very efficient codes available e Polynomial oracle complexity once
e Exponential complexity we have test-set

optimal solution —__

augmenting step

. . . https //de.wikipedia.org/wiki/Branch-and-Cut
Cal'negle Mellon UnlveI‘SIty Algebralc And geometric |dea8 1|n the theory of discrete optimization.

e Loera, Hemmecke, Koppe. 2012
Tepper SChOOl Of BUSIHESS William Larimer Mellon, Founder 15 C PD




7

4 T

Test-set methods - Example

Primal method for Integer Programs Example
We requ?re.:. | | e [1 1 3 1] g [10 Objective
e Aninitial feasible solution 001 2 3 15 :
e An oracle to compare objective /
function
e The test-set (set of directions)
e Given a convex objective, the test
set will point us a direction where
to improve it, and if no
improvement, we have the optimal
solution.
e The test-set only depends on the
constraints and can be computed
for equality constraints with integer
variables
Carnegie Mellon University [1] Grébner Bases and Integer Programming, G. Ziegler. 1997

[2] Integer Programming (1st ed. 2014) by Michele Conforti, Gérard Cornuéjols, and Gigtno C PD
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Test-set methods - Example

N

We require: Example
e An initial feasible solution 111 1. 10 Objective
e An oracle to compare objective s [0 1 2 3] e [15
function
e The test-set (set of directions)
e Given a convex objective, the test
set will point us a direction where \
to improve it, and if no £ R
improvement, we have the optimal
solution. \(\ g
e The test-set only depends on the

Carnegie Mellon University

constraints and can be computed
for equality constraints with integer
variables

[1] Grébner Bases and Integer Programming, G. Ziegler. 1997
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; Graver-best augmentation

Graver-best augmentation algorithm;

Data: AcZ™" beZ™Il, ueZ" f:R" = R, a finite test set
T for IPap1uf, a feasible solution zg to IPap 1 u.r

Result: a optimal solution zyin of IPAp . f;

while There aret € T, € Z. with zg + at feasible and

f(Zo = at) < f(Zo) do

Among all such pairst € 7, a € Z choose one with

f(zo + at) minimal;

zgp = zp9 + of;

end

return zp,




e Y
; Graver-best augmentation

Graver-best augmentation

https://colab.research.google.com/github/bern
alde/QulIP/blob/master/notebooks/Notebook%2
03%20-%20Graver%20basis.ipynb

Carnegie Mellon University

Tepper SChOOl Of BUSIHESS William Larimer Mellon, Founder 19 C PD



https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%203%20-%20Graver%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%203%20-%20Graver%20basis.ipynb
https://colab.research.google.com/github/bernalde/QuIP/blob/master/notebooks/Notebook%203%20-%20Graver%20basis.ipynb
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g/N-fold integer programming

min{wx | Ax=b, 1<x<u, x€Z"}  Multi-index transportation
problem of Motzkin.
Minimization of cost over

/El E‘1 El\ my X+« X Mp_1 X1
E2 0 T 0 tables with given margins
A= pN) = B Ep » @
\ 0 0 -.-- Ey /
W
n
Applications: Properties:
e Multi-commodity flows e Graver basis can be
e Privacy in statistical databases computed in poly-time

e Closest strings determination

Carnegie Mellon University [1] Onn, Shmuel. "Theory and Applications of n-fold Integer Programming." Mixed Integer
Nonlinear Programming. Springer, New York, NY, 2012. 559-593. 20 C PD
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e Consider the special for of the n-fold operator A (7] By &« By
where fi = I, Fy = A B 0 s
M| 0 E --- 0
e Now consider the n-fold product of the 1 X 3matrix : :
L' @& L8 G 1.8 9 :
E
(010010010\ L L § 00 3
o186 100 1] (40 0]_ &
da=1y 4 ¢+ 8 6 000 8 0|~ | 4 a]~tLo
U0 B 11 913 9% 9 0 O 0O A
\0 00000 1 1 1)

e Then every (non)-linear integer program
mingy f(y) st. Ay = b,y € Z}

e Can be lifted to a universal n-fold program
min, f(x)st. (1 1 1)™MMx —a xezm

For a fixed 71 and variable 71 it is solvable via n-fold programming.
e Poly-time to compute Graver basis, poly-many augmentations to reach optimal solution.

Carnegie Mellon University [1] De Loera, Jesus A., and Shmuel Onn. "All linear and integer programs are slim 3-way
transportation programs." SIAM Journal on Optimization 17.3 (2006): 806-821. 21 C PD
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; Graver vs. IP solvers in N-fold

Computing Graver basis for N-fold programs (although poly-time) is really complicated.
Here they used an approximate to compute the Graver basis (via IP actually).

i . di Time vs. dimension
175 Time vs. dimension 4000
time type time type
1.50 == total 3500 w=— total
—— aug total === aug total
1.25 = aug init 3000 e aug init
w— gurobi construct & solve 2500 ™~ gurobi construct & solve
> 1.00
E £ 2000
©0.75 s
1500
0.50
1000
0.25 . 500
0.00 R 0 e _ L
50 100 150 200‘ 250 300 350 400 0 5000 10000 15000 20000
dimension

dimension

aug total is the augmentation procedure (it stays almost constant and grows slowly).

aug init is their procedure to compute Graver basis.

If they only had a way of computing Graver more efficiently! (Quantum or Analytical).

Even for n-fold problems where computing the Graver basis can be done in poly-time, it is really
hard (mainly because of memory)

Carnegle Mellon UIIIVCI'Slty [1] https://arxiv.org/pdf/1802.09007 .pdf 29
CAPD
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V/Graver vs. IP solvers in

2

Quadratic cardinality boolean

_—
P

{ T
min {cTx +xTQx : 1Tx =
L) | s/ Mo Hn\" “gn
2 VWM AR ‘,}\' | Initial
: : , = L W :
For this problem Graver basis can be computed analytically g N 2 "J 'a; solution
e For convex case, regardless of initial point you o) ‘
converge to global optimal solution l >0 T LILILITILL
e For nonconvex, you initialize at several points:
o i ! T
GAMA algorithm Initial point
LI T T T T T

5 ‘ . i Gurobi
2 : *
O r = * T & *
(o B
o i s
~ 10° - s o
o) E . :
£}
= L ¢ ]

0?2 B 1 | | ! ]|
¢ = W Prober;?IUM' 25 "
Problem

Carnegie Mellon University

Tepper School of Business
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; Take-home message

e Computing test-sets classically is rough!

e Naive use of Graver Basis even in Ising/Quantum is not the goal

e Tailored formulations and decompositions that exploit the structure
e \What can be done with “partial” Graver Basis?

e Are there special structured matrices that allow for systematic Graver Basis
calculation?

e Best “use-cases” have complex objective functions (example: higher moments

in Portfolio optimization) and/or highly non-convex or only Oracle calls that defy
commercially available classical solvers

Carnegie Mellon University
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